

Data Management Challenges

Martin Merck SAC Review 2009 Madison Mai 20th-21st 2009

Madison Mai 20th-21st

2009

Agenda

Projected Data and Computing Needs

Computing Resources

Current Status

- Waveform Compression Progress
- Simulation Production
- Data Production Processing
- Outlook

Madison

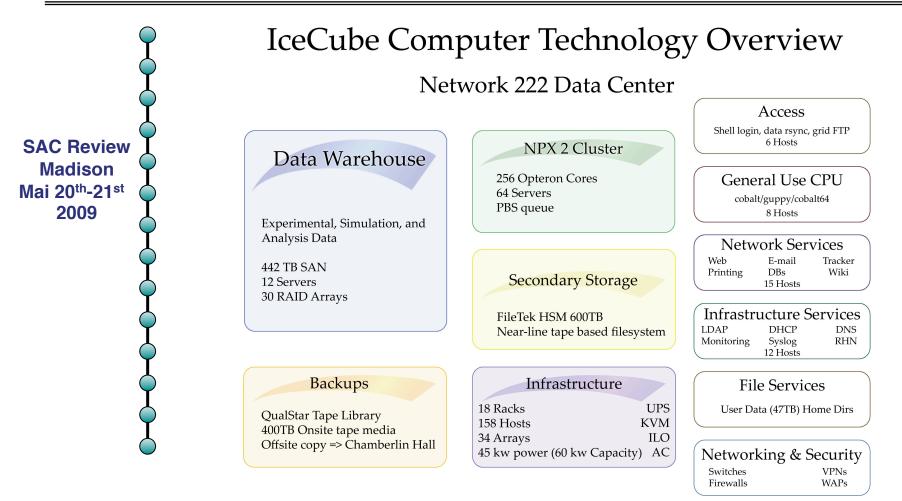
Mai 20th-21st

2009

Current Status

Available computing resources

- Datacenter at Madison
 - Central data repository for IceCube
 - Central compute cluster
 - Access and user accounts for the full collaboration
 - Central infrastructure services (DB, WWW, Mail, etc.)



- Collaboration contributed computing resources
 - Computing resources for MC production
 - Temporary storage for MC datasets
 - Secondary data storage for European access

Current Status

Logical view of the IceCube Datacenter

Increase in data rate

- Raw data files have increased considerably in size
 - Adding SLC readouts increases raw data by a factor of > 2
 - IC40 ~ 325 GB / day
 - IC59 ~ 660 GB / day
 - IC80 ~ 1000 GB /day
 - Compression is useful for limiting satellite transfer needs
 - SLC hits can't be compressed after feature extraction and increase processed data volume
- Need to increase storage for analysis datasets and simulation beyond original plan
 - Some increase from contingency
 - Continuous increase due to technology evolution and standard replacement cycle
- Simulation resources increased due to good GRID usage
 - More MC data to store
 - Use filtering also on MC data (only partly a reduction)

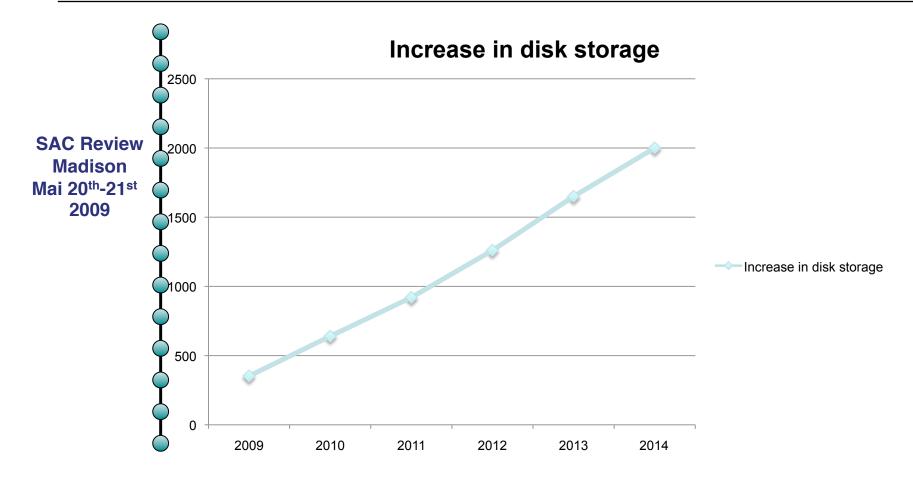
SAC Review

Madison

Increase in data rate

SAC Review Madison Mai 20th-21st 2009

	IC40	IC59	IC86
Trigger rate	1200 Hz	1800 Hz	2700 Hz
Raw data uncompressed	630 GB/day	1300 GB/day	2000 GB/day
Raw data compressed	325 GB/day	660 GB/day	1000 GB/day
Filtered data	35 GB/day	55 GB/day	82 GB/day
Level1 data	50 GB/day	70 GB/day	105 GB/day
Level2 data	85 GB/day	200 GB/day	300 GB/day
Storage 1 Year	60 TB	120 TB	180 TB
Storage 5 years Level2			550 TB
Analysis data			200 TB
Total exp data			930 TB
Simulation data			~ 1.1 TB



Increase in data rate

Experimental raw data [TB]Experiment [TB]Simulation (TB]2010900250300	Analysis [TB]	Total
2010 900 250 300		[TB]
SAC Review	90	640
Madison 2011 1400 350 450	120	920
Mai 20 th -21 st 2012 1900 450 650	160	1260
2013 2400 550 850	250	1650
2014 2900 650 1000	350	2000

Increase in data rate

Martin Merck

Madison

Mai 20th-21st

2009

Computing Resources

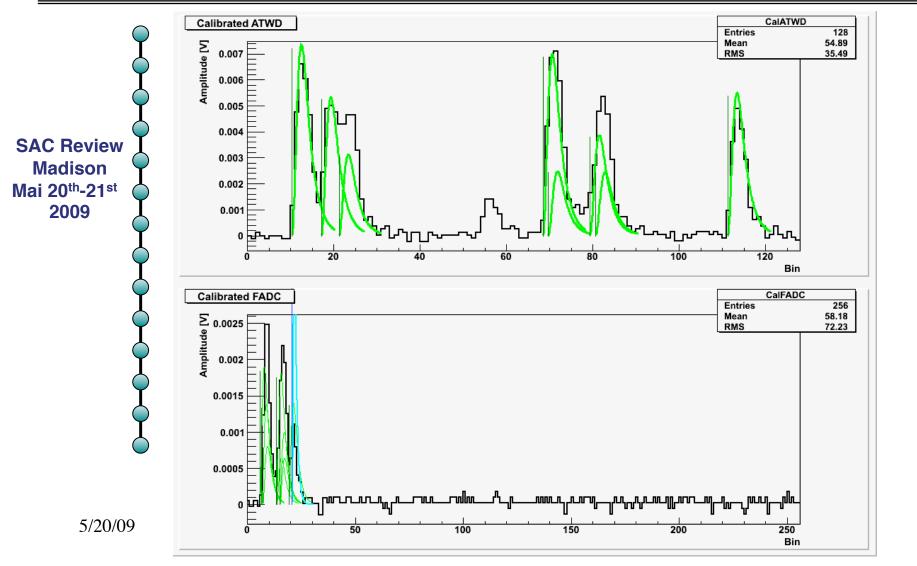
HPC compute cluster

- HPC compute cluster
 - 64 x 4 core Servers
 - 4 x 16 core blades
 - 320 Opteron cores (2.3 – 2.4 GHz)
 - High memory per core
 - 4 GB
 - Planned extension
 - 32 x 8 core Servers
 - 256 Nethalem cores
 - 3 year replacement cycle
 - keep 2 generations of clusters for processing and user analysis

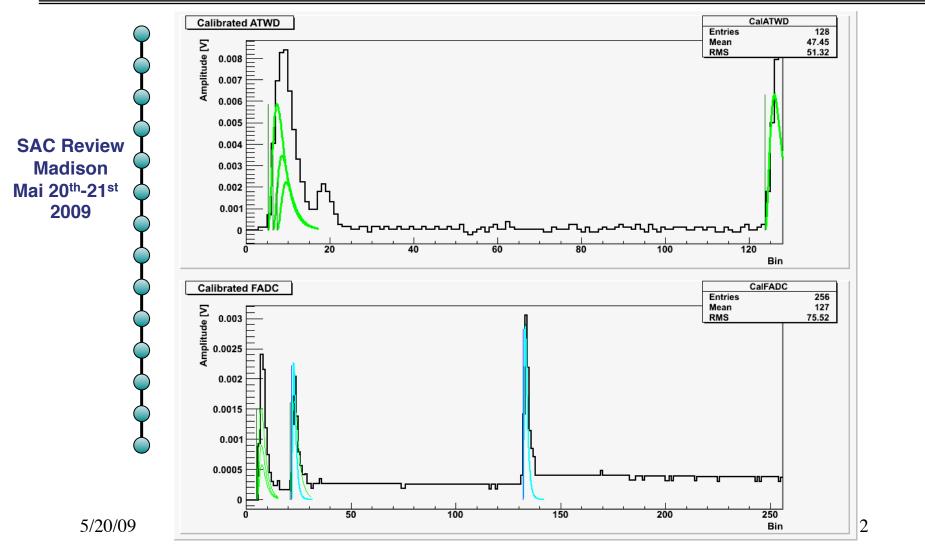
Computing Resources

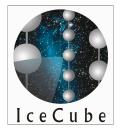
The central data repository

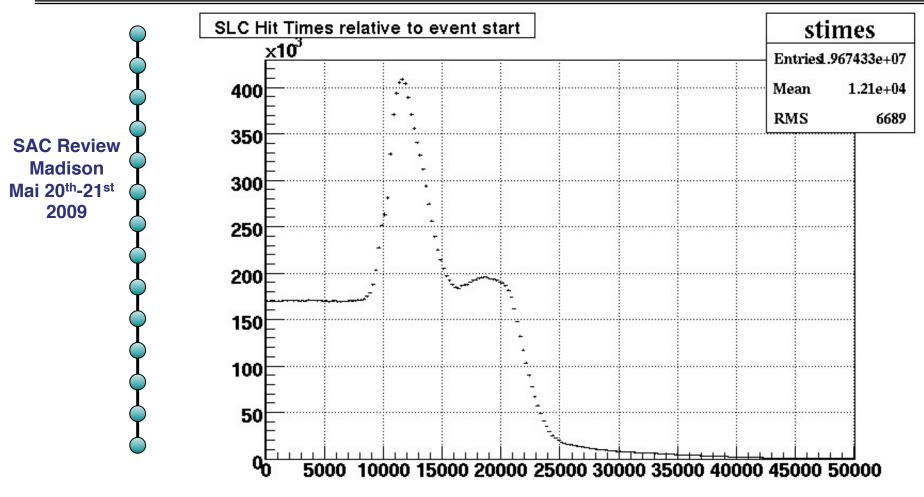
SAC Review Madison Mai 20th-21st 2009



- 404 TB SAN
 - 15 high capacity units
 - 76% used
 - exp/sim/ana
- 45 TB user space
- Tape library with 1.3
 PByte tape capacity
- Needs continuous expansion by replacement with newest technology in a 4 year cycle (assuming 50% disk capacity growth per year)




Feature Extraction



Feature Extraction

SLC hit reduction



Feature Extraction

SAC Review Madison Mai 20th-21st 2009

- Identified several problems with Feature Extraction
 - Splitting of pulses due to waveform templates and selected unfolding algorithm
 - High storage usage due to usage of floating point numbers
 - Some bugs identified during the process
- High increase of SLC hits
 - Need of event cleaning due to high
 - number of noise hits

Feature Extraction

SAC Review Madison Mai 20th-21st 2009 Started rewrite of FeatureExtractor

- Analysis of several approaches
 - Better unfolding algorithms
 - New templates
 - Several bug fixes
- Needs still some time
 - New ideas needed
- Work on SLC hit cleaning in progress
 - Can reuse some algorithms from AMANDA
 - Some more studies needed to determine potential savings

Madison

Mai 20th-21st 2009

Simulation Production

Available GRID resources

- Produce MonteCarlo dataset for the collaboration
 - Signal generation
 - ν_μ, ν_e, ν_τ
 - WIMPs
 - Monopoles
 - Background generation

- Muons from cosmic ray air showers
 - Need at least 4000 cores for real time simulation
- Distributed production leveraging GRID resources

Simulation Production

Available GRID resources

17

Υ	Institute	Cores		Disk Space	Farm Type	FTE
$\mathbf{\Phi}$		Guaranteed	Available	ТВ		In-kind
	UW GLOW (US)	140	800	190	Grid	
	UW NPX2 (US)	100	256	100	Batch	
	. ,	100	700		Batch	
\diamond	UW CHTC (US)			_		
	UMD (US)	140	278	5	Batch	0.40
$\mathbf{\Psi}$	PSU (US)	100	560		Batch	0.40
	LBNL PDSF (US)	50	700	2	Batch	0.20
Ĭ	UDEL (US)	40	136	50	Batch	0.40
\mathbf{P}	LONI (US)	200			Batch	0.20
Germany	Aachen (DE)	90	200	15	Grid	0.40
	Dortmund (DE)	150	300	30	Grid	0.40
	Dortmund (DE)	100		20	Batch	
	Mainz (DE)	230	400	26	Grid	0.40
	Wuppertal (DE)	64	128	17	Grid	0.40
	Wuppertal (DE)	150		30	Batch	
	DESY (DE)	400	700	100	Batch	0.40
॑	DESY (DE)	100	200	20	Grid	
Sweden	SweGrid (SE)	100	400		Grid	0.20
Belgium	Brussels (BE)					0.20
	Totals	2,254	5,758	505		4.00

Madison

Mai 20th-21st 2009

Data Production Processing

- Steps of central processing
 - Level1: unpacking an first guess reconstructions
 - Level2: high level reconstructions
- Optimize use of limited resources
 - Provide high level reconstructions of tracks, cascades, air showers, EHE events, etc for all types of analysis
- Provide analysis ready data in the shortest time possible
- Fast feedback to detector operations on analysis level data quality

Data Production Processing

IC40 reconstructions

SAC Review Madison Mai 20th-21st 2009

Reconstruction	Percentage of events	CPU time / day	
Linefit	100%		
SPEFitSingle	100 %	1.0 day	
SPEFit32	66 %	21.3 days	
SPEFit32Paraboloid	35 %	4.8 days	
SPEFit32Umbrella	66 %	0.6 days	
SPEFit32Bayesian	9 %	3.0 days	
SPEFit16Split (4 times)	9 %	3.3 days	
SPEFit16SplitBayesian (4 times)	9 %	3.8 days	
MPEFit	66 %	1.1 days	
MPEFitParaboloid	35 %	8.6 days	
SPEFit32PhotorecTrack	35 %	1.6 days	
SPEFit32PhotorecEnergy	66 %	0.1 days	
MPEFitPhotorecEnergy	35 %	0.1 days	
SPE32FitMuE	66 %	0.05 days	
MPEFitMuE	66 %	0.05 days	
CombinedSPEFitSingle	22 %	0.5 days	
CombinedSPEFitParaboloid	22 %	1.7 days	
JamsSPEFit32	22 %	16 days	
CascadeLlh (4 recos)	30 %	1.2 days	
CascadeLlhAmOnly (4 recos)	10 %	0.3 days	
CascadeLlhCombined (2 recos)	10 %	0.15 days	
EHE (3 recos)	2 %		
Shower front (3 recos)	5 %	0.02 days	

Madison

Mai 20th-21st 2009

Summary

- Data storage is impacted by higher then expected data volumes.
 Importance of SLC bits has significantly increased
 - Importance of SLC hits has significantly increased with the extension to low energy physics
 - Simulation and data production centrally managed and providing all datasets for scientific analysis
 - Relying heavily on distributed and GRID resources to achieve the goals of MC production
 - Centralized data processing leveraging the high speed access to the data in the Madison datacenter
 - Urgent need to expand storage and computing
 - Faster processing needed
 - More reserve for unexpected reprocessing

Madison

Mai 20th-21st 2009

Summary

- Need to raise awareness in the collaboration of best use of limited resources
 - Use online filtering as level3 trigger.
 - e.g.: Don't define raw data as hardware triggered data but software filtered data. (Only write filtered data to tape)
 - Earlier reduction of datasets with harder cuts
 - Efficiency needs to be defined as loss at final cut level and not only based on signal efficiency
 - Limit use of expensive reconstructions to reduce CPU requirements
 - More intelligent event cleaning
 - Pattern recognition and event categorization
- Lots of ideas, but time and manpower needed to implement
 - Competing against exciting discovery potential of physics analysis